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The transport of interacting particles subject to an external low-frequency ac force on a ratchetlike asym-
metric substrate is studied via a nonlinear Fokker-Planck equation as well as via numerical simulations. With
increasing the particle density, the ratchet current can either increase or decrease depending on the temperature,
the drive amplitude, and the nature of the interparticle interaction. At low temperatures, attracting particles can
condense randomly at some potential minima, thus breaking the discrete translational symmetry of the sub-
strate. Depending on the drive amplitude, condensation results either in a drop to zero or in the saturation of the
net particle velocity at densities above the condensation density—the latter case producing a very efficient
rectification mechanism.
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INTRODUCTION

Stochastic transport on periodic asymmetricsratchetd sub-
strates far from equilibrium has raised widespread interest in
the recent literaturef1g. Intense research activity in this field
is partly motivated by the challenge to describe and control
some biological processes at both the cell levelsfor instance,
transport in ion channelsf2gd and the body levelsmuscle
operationsf3gd. Moreover, recent technological advances al-
low us to develop devices to guide tiny particles on nano-
and microscalesf4g. Some of these devices have already
been realized experimentally to control the motion of vorti-
ces in superconductorsf5g, particles in asymmetric silicon
poresf6g, charged particles through artificial poresf7g, and
arrays of optical tweezersf8g, among others.

An important implementation of this category of devices
is the so-called rocked ratchetf9g, where the oscillating par-
ticle motion driven by an external periodic force develops a
net drift component due to the asymmetry of the substrate
potential. It was proven analytically in 1Df9g and found
numerically in 2Df10g that the net drift velocity in a ratchet
exhibits a maximum versus the driving amplitudesor the
temperatured. This allows us in some cases to tune the dc
ratchet output to a desired value. However, the far-less-
studied interaction among particles is expected to have an
important role in the rectification power of a rocked ratchet.
Indeed, it has already been foundf10–16g that interactions
can result in very unusual transport properties, including
spontaneous symmetry breaking, commensurability effects,
unusual negative mobility, and surprising current inversions.

This paper analyzes the density dependence of the ratchet
current of a 1D gas of interacting particles. We stress that
this model can describe a variety of physical systemsf4g. For
instance, experiments on transport in an ion channelf2,17g
and particles in asymmetric silicon poresf6g could be studied
theoretically within the model discussed in this paper. More-
over, a similar modelf18g was successfully used for inter-
pretating the net motion of vortices in a magnetic-
superconductor hybrid microstructuref5g. In particular, when
increasing the vortex densitysmagnetic fieldd, a current in-
version was predicted and observedf5g.

The apparently simple model studied here is very hard to
investigate analytically. We study it by solving a nonlinear
Fokker-Planck equation, where the interparticle interaction is
effectively accounted for by means of a mean-field potential
f18g. Our analytical results are confirmed through numerical
simulations, which, in turn, allow us to reach beyond the
mean-field approximation. For repulsive interactions, we
show that the particle net current hits a maximum when in-
creasing the particle density at relatively low temperatures
and drive amplitudes; otherwise, it gets monotonously sup-
pressed as the density increases. In contrast, for attracting
particles, the net current grows with increasing their density
n up to a certain valuenc, where the analytical solution to
our mean-field scheme indicates the occurrence of adrive-
dependent dynamical phase transition. Extensive numerical
simulations prove that, for a low ac amplitude, the particles
condense around the potential minima as they are being
pushed in either direction. This results in thesudden drop of
their drift velocity at the condensation point. On raising the
drive amplitude, it can happen that the particles condense
only when the ac force pushes them against the steeper slope
of the asymmetric substrate wells, while remaining in the
running state as they are driven in the opposite direction. For
such a range of large drive amplitudes,the ratchet current
versus the particle density saturates at a maximal value in
the vicinity of the condensation density.

MODEL

Langevin and Fokker-Planck approaches

Our starting point is the set of Langevin equations

ẋi = −
]Usxid

]xi
− o

jÞi

]

]xi
Wsxi − xjd + Fstd + Î2kBTjsidstd s1d

for interacting particles moving on the one-dimensional
asymmetric periodic potentialU, Usx+ ld=Usxd, in the pres-
ence of a time-periodic forceFstd with frequencyn. Here,
the Gaussian white noisejsidstd with zero averagekjsidl=0
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satisfies the fluctuation-dissipation relationkjsidstdjsidst+tdl
=dstdd; T is the temperature,kB is the Boltzmann constant,
andW denotes the pair interaction potential. Indicesi and j
run over all particles. For simplicity, we set the viscous co-
efficient equal to 1sSmoluchowski approximationd. We inte-
grated the equation sets1d for our numerical simulations,
while the analytical predictions reported below were derived
by solving the integro-differential equations for the corre-
sponding many-particle distribution functions. The Fokker-
Planck-like equation for the one-particle distribution func-
tion, F1st ,xd, can be written in the formf19g

]F1st,xd
]t

=
]

]x
FS ]Usxd

]x
− FstdDF1st,xdG +

]

]x
F1st,xd

3Edx̃ F1st,x̃d Gst,x,x̃d
]Wsx − x̃d

]x
+ kBT

]2F1st,xd
]x2 ,

s2d

where F2st ,x, x̃d;F1st ,xdF1st , x̃dGsx, x̃,td denotes a binary
distribution function. It is apparent that particle-particle cor-
relations decay on a scale of the order of either the interac-
tion lengthl for low particle densities,n!1/l, or the inter-
particle distance 1/n for high particle densities,n@1/l. As
a consequence, the functionG, which describes the particle-
particle correlation, differs appreciably from 1suncorrelated
particle motiond for particle separationsux− x̃u&minhn−1,lj,
only. This has been numerically proved inf19g. Therefore, if
each particle interacts with many neighbors, i.e.,nl@1, the
function G in Eq. s2d can be safely approximated to 1 over
the entire integration domainsof orderld of edx̃F1G]W/]x.
It follows that Eq.s2d can be reduced to itsmean-fieldform
f18–20g

]F1st,xd
]t

= −
] j

]x

=
]

]x
FF1st,xdH ]Umf

]x
− FstdJ + kBT

]F1st,xd
]x

G , s3d

where the mean-field potentialUmfsxd is defined as

Umfsxd = Usxd +E dx8 Wsx − x8dF1st,x8d. s4d

Hereafter, the one-particle distribution functionF1st ,xd is
normalized in terms of the average particle densityn, i.e.,

E
0

l

F1st,xd dx/l = n. s5d

In order to make the problem more tractable, we further
discard nonlocal effects by assuming the interaction lengthl
to be much smaller than the periodl of the substrate potential
Usxd. This allows us to replace the integro-differential equa-
tion s3d by

]F1st,xd
]t

=
]

]x
FS ]Usxd

]x
− FstdDF1st,xd + gF1

]F1

]x
G

+ kBT
]2F1st,xd

]x2 s6d

with

g ;E dx8 Wsx − x8d. s7d

Therefore, Eq.s6d is valid under the following restric-
tions:

n−1 ! l ! l . s8d

Note that, even though we assumed locality with respect to
the substrate unit length, the interparticle interaction can still
be regarded as a long-range interaction because of the den-
sity requirementl@1/n. These are the approximations un-
der which in the following sections we solve analytically Eq.
s6d and compare our analytical results with data from nu-
merical simulations based on the Langevin equationss1d.
Although conditionss8d strictly apply to a limited class of
physical systems, the results obtained below have much
wider applicability. Indeed, numerical simulations performed
well outside the parameter regions8d agree quite closely with
our mean-field description.

Adiabatic approximation

In the low-frequency limit, at any timet0 the system can
be regarded as being in the steady state corresponding to an
applied dc forceF;Fst0d; hence, the adiabatic expression
for the ratchet current

jDC = nE
0

1/n

jsFd dt0, s9d

where jsFd is the stationary current in the presence of the
constant driveF. If jsFd is not an odd function ofF, then the
rocked ratchet can rectify the oscillatory motion of the par-
ticles. The stationary solution to Eq.s3d can be written as

− jsFd = sU8 − FdF1sxd + kBTF18 + gF1F18 s10d

sthe prime denotes anx derivatived. When adopting, for sim-
plicity, the piecewise linear periodic potentialfinset in Fig.
1sadg

U = Q
x

l1
for 0 , x , l1,

U = QF1 −
x − l1

l2
G for l1 , x , l s11d

sl1+ l2; ld, the stationary one-particle distribution in Eq.
s10d, F1sxd, can be expressed in implicit form as

F1sF − f1d − j

P0sF − f1d − j
= expS sF − f1dx − gsF1 − P0d

kBT + gj/sF − f1d D s12d

for 0,x, l1, and
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F1sF + f2d − j

P1sF + f2d − j
= expS sF + f2dsx − l1d − gsF1 − P1d

kBT + gj/sF + f2d D s13d

for l1,x, l. Here,P0 andP1 are the particle densities at the
potential minima and maxima, respectively, i.e.,P0=F1s0d,
P1=F1sl1d; f1=Q/ l1 and f2=Q/ l2 are the two restoring
forces exerted by the substrate.

Two equations for the three unknown quantitiesP0, P1,
and j were derived writing Eqs.s12d and s13d for the ex-
tremal pointsx= l1 andx= l, respectively, and imposing peri-
odic boundary conditionsF1sld=F1s0d=P0. A third equation
for these variables was obtained by integrating Eq.s10d over
one unit cell of the piecewise linear potentialUsxd and then
eliminating the two integration constantse0

l1F1sxddx and
el1

l F1sxddx by means of the normalization conditions5d. The
resulting equations can be conveniently expressed as

P −
V

f− = −
D

2
cothH f−/G1 + g̃D

2f1 + g̃V/f−gJ ,

P −
V

f+ =
D

2
cothH f+/G2 − g̃D

2f1 + g̃V/f+gJ ,

V =
f−f+ + sg̃P + 1dDqG1G2

f + qsG2 − G1d
, s14d

in terms of the dimensionless variables

P =
P0 + P1

2n
,

D =
P0 − P1

n
,

V =
jl

kBTn
, s15d

FIG. 1. sColor onlined Repelling particles: net velocityVDC ver-

sus dimensionless pair couplingg̃=gn/kBT for different values ofÃ
in the regime of high activation,q=Q/kBT=10, and large aniso-

tropy g. VDCsg̃d exhibits a broad peak forÃ,20. The normalized

driving amplitudeÃ= lA /kBT is a measure of the strength of the ac
drive, compared to the disordering thermal energy. These results
were obtained by solving the mean-field set of equationss14d. Inset
in sad: two cells of the sawtooth substrate potentialfEq. s11dg.

FIG. 2. sColor onlined Attracting particles:sad Net velocityVDC

versus effective interaction couplingg̃=gn/kBT for different values

of driving amplitudesÃ=Al /kBT in the regime of low activation,
q=1, and large anisotropy,g=40. There exists no mean-field solu-
tion for g̃, g̃c sleft end pointsd. sbd Gas-liquid phase diagram in the
density-drive plane. The phase boundary between gas and liquid
phases was obtained based on the criterion of existence of a solu-
tion to the mean-field equationss14d. At zero drivingFDC=0, the
transition is an equilibrium transition. The condensation transition is
driven out of equilibrium by increasing the DC forceFDC. Black
dots in sbd mark the left-end-points of curves insad. These results
were obtained by solving the mean-field set of equationss14d.
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and the model parameters

q =
Q

kBT
= sactivationd,

f =
Fl

kBT
= sdrived,

g̃ =
gn

kBT
= sdensity or pair couplingd, and

g = l1/l2 = sratchet anisotropyd. s16d

Here, we introduced the auxiliary anisotropy parameters

G1 = l/l1 = 1 +g−1 and

G2 = l/l2 = 1 +g, s17d

as well as the total dimensionless forces

f− = f − qG1 and

f+ = f + qG2 s18d

experienced by a single particle moving along the relevant
sides of a potential well. A crucial assumption of this ana-
lytical procedure is the spatial periodicity of the distribution
function Fsxd=Fsx+ ld. This allowed us to reduce a spatially
infinite problem to one cellssay, fromx to x+ ld. However,
this simplification becomes invalid near the condensation
transition, where a spontaneous symmetry breaking mecha-
nism destroys the translational symmetry of the substrate
cells.

At low densities, the net particle velocity can be expanded
in powers ofg̃,

V = V0 + g̃V1 + Osg̃2d, s19d

whereV0 andV1 read

V0sfd =
sf−f+d2a

f−f+ff + qsG2 − G1dga − 2sqG1G2d2 , s20d

V1sfd =
qD0G1G2f−f+hP0a − fD0 + V0/G2gb+ + fD0 − V0/G1gb−j

f−f+ff + qsG2 − G1dga − 2sqG1G2d2 , s21d

respectively. Here, we used the zeroth-order approximation
of the dimensionless probabilities

D0 = Dsg̃ = 0d =
ff + qsG2 − G1dgV0 − f−f+

qG1G2
,

P0 = Psg̃ = 0d =
D0

2
cothF f+

2G2
G +

V0

f+ , s22d

and the following combinations of Boltzmann-like prefac-
tors:

a = cothS f+

2G2
D + cothS f−

2G1
D ,

b+ = F2 sinh2S f+

2G2
DG−1

,

b− = F2 sinh2S f−

2G1
DG−1

. s23d

The functionsDsg̃d, Psg̃d, andVsg̃d at smallg̃ can be deter-
mined by means of Eqs.s20d and s21d. In order to compute
these functions at higherg̃, Eqs.s14d can be solved numeri-
cally by increasingg̃ stepwise through a simple iteration pro-
cedure. Numerically obtained curves forVsg̃d are plotted in
Figs. 1 and 2.

ANALYTICAL RESULTS

Let us now consider the square-wave signalFstd
=A sgnfcoss2pntdg with sgnf¯g denoting the sign of the
argument. In the adiabatic approximation with frequencyn
!A/ l, the particle net velocity can be written as

VDC = fVsÃd + Vs− Ãdg/2, s24d

whereVs±Ãd are the relevant drift velocities in the presence

of the dc forces ±Ã, respectively, with

Ã ;
lA

kBT
. s25d

The g̃ dependence ofVDC is shown in Fig. 1sad for the case
of repelling particles in the regime of large activationsq si.e.,
a large ratio of the potential barrier to thermal-fluctuation
energyd. Particle transport in the ratchet is enhanced by in-
creasing the interaction strengthg sor the particle densitynd
at relatively low drivesÃ, as shown by the pronounced
maxima of the corresponding curvesVDCsg̃d at g̃.0 fFig.

1sadg. This effect is suppressed for larger values ofÃ, where
a monotonic decay ofVDCsg̃d was observedfFig. 1sbdg. The

dependence ofVDC on g̃ and Ã can be understood qualita-
tively by noticing that the repelling particles tend to expel
one another from the potential wells; this effectively
smoothes out the potential barriers. For highq and low

drives Ã, the particles are strongly confined in the potential
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wells so that the drift current is weak. In such a case, the
suppression of the potential barriers due to the mutual repul-
sion of the particles enhances their mobility, thus allowing a
stronger rectification effect. However, at even stronger

drives, Ã*q, the suppression of the barriers, wheng̃ in-
creases, results in a weaker anisotropy of the system: The
positive and negative currents compensate each other more
effectively, leading to a monotonic decay ofVDCsg̃d. For low

barriersq&1, e.g., higher temperatures, the interval of the

drive amplitudeÃ, whereVDCsg̃d exhibits a peakfas in Fig.
1sadg, shrinks and finally disappears completely.

The case of attracting particles corresponds to negative
values of the dimensionless pair couplingg̃. Wheng̃ is very
small,VDC is a linear function ofg̃,

VDC = fV0sÃd + g̃V1sÃd + V0s− Ãd + g̃V1s− Ãdg/2. s26d

Thus, as opposed to the case of repelling particles, the net
velocity VDC increasesfFig. 2sadg with increasing the particle
densityn or the strengthugu of interactions for relatively low

q values and/or largeÃ. Similarly, VDC decreases with in-
creasingn or ugu for large q fsee Fig. 3scd, solid curveg.
However, the applicability of these results for attractive in-
teractions is restricted to the negative interval ofg̃ extending

FIG. 3. sColor onlined Net particle speedVDC versus drive am-
plitude A for repelling, attracting, and noninteracting particles at
g=1.2, g̃= ±0.05, q=20 sad and q=2 sbd. Panel scd shows the
curvesVDC versus effective interaction strengthg̃ for the parameter
values corresponding to the dotss1d and s2d in sad. These results
were obtained by solving the mean-field set of equationss14d.

FIG. 4. VDC versusn for repelling particles. These datassym-
bolsd were obtained by numerically solving the Langevin Eq.s1d for
the potentialUsxd in Eq. s11d and the truncated pair potentialWsxd
in Eq. s27d; while the analytical curves were obtained by solving the
mean-field set of equationss14d. Other simulation parameters:n
=0.01, A=0.5, Q=1, l1=0.9, l=0.1, gMD =0.02. sad T=0.2 ssolid
circlesd and sbd T=0.05 sopen circlesd. Periodic boundary condi-
tions were imposed over two unit cells of the piecewise linear po-
tential s11d. The corresponding analytical predictions forg=gMD

=0.02 sdashed linesd and g=gMF=0.02/1.5<0.0133 ssolid linesd
are reported for comparisonssee textd.
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from zero down to the critical valueg̃csÃ,qd scorresponding
to a critical densitync or a critical interaction strengthgcd for
which Eq.s14d ceases to have a solution. This happens when
the probability,P0=F1s0d, for the particles to sit at the bot-
tom of the potential wells reaches a corresponding critical
value, which forg→` approacheskBT/ ugu. This behavior
signals the onset of a phase transition: A macroscopic num-
ber of attracting particles is predicted to condense in the
“liquid” phase around the substrate minima. Note that this
finding for long-rangeinteracting particles does not contra-
dict the common understanding that such a phase transition
cannot occur in a 1D multiparticle system withshort-range
interactions. Indeed, as mentioned above, the local form of
the mean-field Fokker-Planck equations6d was obtained un-
der the assumptions8d that many particles can be fitted
within one interaction length, so that their interactions can be
regarded as long-range. Using the criterion of the existence
of the mean-field solution Eq.s14d, we constructed the
boundaryfFig. 2sbdg between gaslike and liquidlike phase for
attracting particles subjected to a dc forceFDC: The ensuing
phase transition turns out to be sensitive also to the presence
of external biases, i.e., the condensation point depends on
FDC, nc=ncsFDCd.

To determine the interval of driving amplitudesA where
increasing the densityn of the interacting particles enhances
rectification, we computed the curvesVDCsÃd for small val-
ues ofg̃ using the analytical expressionss20d ands21d for V0
and V1 fFig. 3sadg. For highq, the net velocity of repelling
particles increasessdecreasesd with increasingg sor nd if the
drive is smallerslargerd than an optimal valuefFig. 3sadg. For
the same value ofq, the current of attracting particles be-
haves in the opposite way. Two typical curvesVDCsg̃d, for
fixed values ofA andq, are displayed in Fig. 3scd. For lowq,
VDC grows monotonically withg̃, no matter what the value of
A fi.e., VDC increasessdecreasesd monotonically with raising
n or changingg from negativesattractingd to positive values
srepelling particlesdg: The three curvesVDCsAd plotted in Fig.
3sbd never cross.

NUMERICAL SIMULATIONS

In order to assess our analytical predictions, we numeri-
cally simulated the Langevin dynamicss1d for the piecewise
linear periodic potentialUsxd in Eq. s11d and a conveniently
truncated pair potential

Wsyd = g
l − uyu

l2 if uyu , l,

W= 0 otherwise. s27d

Figures 4sad ssolid symbolsd and 4sbd sopen circlesd clearly
show that, as predicted in our theoretical analysis, the net
current for repelling particles increasessdecreasesd with the
density at lowshighd temperaturesfhigh slowd qg. The com-
parison between numericssdotsd and theorysdashed curvesd

FIG. 5. VDC versusn for attracting particles withA=0.8, T
=0.2 ssolid squaresd and A=1, T=0.4 sopen squaresd. Periodic
boundary conditions were imposed over two unit cells of the piece-
wise linear potentials11d. These results were obtained by numeri-
cally solving the Langevin Eq.s1d for the potentialUsxd in Eq. s11d
and the truncated pair potentialWsxd in Eq. s27d. Other simulation
parameters:n=0.01,Q=1, l1=0.9, l=0.1, andg=−0.02.

FIG. 6. sColor onlined sad Net average velocityVDC versus par-
ticle density n for repelling sopen circlesd and attractingssolid
squaresd particles. These results were obtained by numerically solv-
ing the Langevin Eq.s1d for the potentialUsxd in Eq. s11d and the
truncated pair potentialWsxd in Eq. s27d. Other simulation param-
eters aren=0.01, A=6, Q=1, l1=0.9, l=0.1, g=−0.02, andT
=0.2. sbd Spatial distribution of attracting particles forn=7, corre-
sponding to data marked by a black circle insad. One snapshot
snormalized distribution;F1/nd of the particles was taken at each
drive period with the external force pushing in the “hard”ssolid
line, the left axisd or the “easy”sdotted line, the right axisd direc-
tion, respectively. Particle condensation at both potential minima is
apparent in the latter case. In both panels, periodic boundary con-
ditions were imposed over two unit cells of the piecewise linear
potentials11d.
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reveals a quantitative disagreement. This apparent discrep-
ancy points to unavoidable corrections to our mean-field
scheme, including an appreciable screeningf19g of the
interparticle interaction, and nonlocality effects introduced
by the truncated pair potentialW used in the simulations. To
make the approximate analytical curves reproduce closer the
corresponding simulation data, the bare interaction constant
g=gMD employed in the simulation must be replaced in Eqs.
s14d by a rescaled interaction constantgMF, namely gMF
.gMD /1.5 ssolid curves versus circles in Fig. 4d. Thus, our
analytical results agree quite well with numerics, including
the current inversion at high particle density in Fig. 4sbd.

As predicted analytically, for the case of attracting par-
ticles, the ratchet current increases with the particle density
up to the condensation pointnc fFigs. 5 and 6ssquaresdg. For
densities above the condensation thresholdnc, different sce-
narios can take place. If the amplitudeA of the ac force is
smaller than both substrate restoring forcesQ/ l1 and Q/ l2,
then the particles condense in the tilted potential wells, re-
gardless of the orientation of the drive. Since the mobility of
the condensed particles is zero, the average net particle cur-
rent vanishes forn.nc sFig. 5d. Most notably, if A takes
values between the two substrate forcesQ/ l1, Q/ l2, i.e., f1
,A, f2, then potential wells can exist only in one tilted
configurationshere,U+Axd. Therefore, in our simulation the
particles condense at the minima ofU+Ax, when the ac
force pushes them to the left; the instantaneous current in
such a “hard” direction drops to zero. On the contrary, the
particles are almost ballistic when the periodic force pushes
them in the opposite, “easy” directionsno minima and there-
fore no condensation inU−Axd. The stroboscopic spatial dis-
tribution of attracting particles subject to an ac drive pointing
in the hard and easy directions, respectively, is shown in Fig.
6sbd: When pushed in the hard direction, almost all particles
condense at the bottom of the wells; on the contrary, particles
moving to the right in the running state are distributed quite
homogeneously in space. Therefore, motion is allowed in the

“easy” or natural ratchet direction, only; the curveVDCsnd
levels off in correspondence with the condensation density
nc, i.e., it saturatesfor n.nc fFig. 6sad, squaresg. For larger
ac forces withA.maxsf1, f2d, no condensation occurs in
either direction andVDCsnd approaches monotonically a satu-
ration valuesFig. 7d which decreases with increasingA.

SPONTANEOUS SYMMETRY BREAKING

Next, we study how the net velocityVDC depends on the
total numberN of particles in a periodic ratchet with a period
of two or four unit cellssFig. 8d, i.e., two-teethfinset in Fig.
1sadg or four-teeth closed chains. These results can be easily
extended for larger numbers of unit cells.

For repulsive particle-particle interactions, the net veloc-
ity VDC

s4d of the four-cell ratchet chain coincides with the net
velocity VDC

s2d of the two-cell ratchet chain as long as the two
devices support the same particle density: that is,VDC

s4d s2Nd

FIG. 7. Net velocityVDC versus particle densityn for attracting
particles withA=15 andT=0.2. These results were obtained by
numerically solving the Langevin Eq.s1d for the potentialUsxd in
Eq. s11d and the truncated pair potentialWsxd in Eq. s27d. Other
simulation parameters aren=0.01, Q=1, l1=0.9, l=0.1, andg
=−0.02. Periodic boundary conditions were imposed over two unit
cells of the piecewise linear potentials11d. Because of the strong
driving, there is no condensation andVDC increases monotonically.

FIG. 8. sColor onlined Net velocity VDC versus the number of
particlesN for sad attracting andsbd repelling particles. These re-
sults were obtained by numerically solving the Langevin Eq.s1d for
the potentialUsxd in Eq. s11d and the truncated pair potentialWsxd
in Eq. s27d. Periodic boundary conditions were imposed over two
ssolid squaresd and four potential unit cellssopen squaresd. Other
simulation parameters aren=0.01,Q=1, l1=0.9,l=0.1,g= ±0.02,
T=0.3, andA=6. The open small circles are the simulation data for
a four-cell chain with half the number of particles, i.e.,VDC versus
N/2.
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=VDC
s2d sNd fsee Fig. 8sbdg. This means that the net velocities

depend only on the particle density in the ratchet, as sug-
gested by the spatial equivalence of the potential cells.

In contrast, for attracting particles, we obtainVDC
s4d s2Nd

ÞVDC
s2d sNd fFig. 8sadg, which indicates that the cell equiva-

lence is broken. In order to clarify this property, we plot the
particle distributionsF1 below and above the condensation
point sFig. 9d. Simulating two substrate potential cells, we
found that both cells are equivalently occupied at low par-
ticle densitiesssee point 1, below the condensation pointd.
Above condensationspoints 2 and 3d, the spatial equivalence
of the two cells is spontaneously broken: particles condense
either on the right or the left minimum, no matter if the
initial particle distribution was set the same in both cells.
This is the manifestation of very small fluctuations getting
strongly amplified in time. Note that the translational sym-
metry of the substrate may be broken in nonequilibriumsat

relatively weak drivingd and equilibrium operating condi-
tions sno external drived alike.

In the mean-field approach, this peculiar symmetry break-
ing can be understood as due to the competition of solutions
with different spatial periods:l, 2l, 3l, etc. Indeed, for a
two-cell chain, the analytical technique of Sec. II B would
introduce five independent variables:P0=F1s0d, P1=F1sl1d,
P2=F1sld, P3=F1sl + l1d, and j , instead of the three variables
P0=F1s0d, P1=F1sl1d, and j in Eq. s14d. In order to derive a
complete set of equations for these five variables, we need to
impose periodic boundary condition within two cells, i.e.,
P0=F1s0d=F1s2ld. The resulting equation set admits solu-
tions with both spatial periods,l and 2l. A detailed discussion
of this point will be reported elsewhere.

The symmetry-breaking mechanism discussed here con-
sists in the irregular accumulation of particles in some sub-
strate wells, with the remaining wells getting completely de-
pleted. This occurs via the amplification of fluctuations: very
minor, random differences in particle occupation of different
cells become more and more pronounced when time evolves

FIG. 9. sColor onlined Spontaneous symmetry breaking destroys
the equivalence of two neighboring potential cells at the phase tran-
sition. The normalized particle distributionsF1sx/ ld /N are shown
for four different total numbersN=2n of particles inside the two
cells, corresponding to the net velocityVDCsNd shown at the top.
The normalized equilibrium distributionsF1sx/ ld /N for the same
particle numbers are also shown in the right column. These results
were obtained by numerically solving the Langevin Eq.s1d for the
potentialUsxd in Eq. s11d and the truncated pair potentialWsxd in
Eq. s27d. The parameters used here aren=0.01, Q=1, l1=0.9, l
=0.1,g=−0.02,T=0.2, andA=0.5. Both cells are equally occupied
at densities lower than the condensation pointse.g., point 1d; this
equivalence is broken at higher densitiesspoint 2 and 3d.

FIG. 10. sColor onlined The mechanism of spontaneous symme-
try breaking of Fig. 9 has counterparts in the theory of equilibrium
phase transitionsfe.g., the paramagnetic-ferromagnetic transition
shown insad and certain dynamical instabilities of the type sketched
in sbd, see textg. scd A schematic diagram of a simple realization of
a four-cell ratchet device. Two coaxial cylinders, the outer one hav-
ing a sawtooth-shaped inner cross section, rotate with angular fre-
quencyVR; subject to the resulting centrifugal force, the elastic
particles experience an effective ratchetlike potential. An ac driving
force can be generated by periodically switching the rotation fre-
quency between two valuesVR±DVR.
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and finally break the original equivalence of all cells. This is
somewhat similar to the “Maxwell demon” mechanism
where particles originally equally distributed among cells ac-
cumulate in some wells while depleting other wells. Also, it
provides a deep analogy between this nonequilibrium dy-
namics near the condensation point and dynamical instabili-
ties or critical fluctuations near symmetry-breaking phase
transitionsssee, e.g., Ref.f21gd. For instance, critical fluctua-
tions at the critical temperature produce a symmetry-broken
ferromagnetic stateswith either up or down magnetization
along a ferromagnetic easy-axisd from a fully symmetric
paramagnetic phasefFig. 10sadg. By analogy, if two particles
start their motion from an unstable equilibrium position, they
can move far apart from one another, depending on very
minor differences in their initial conditionsfFig. 10sbdg. Note
that such an analogy between equilibrium phase transitions
and instability of dynamical systems has been successfully
used in the renormalization-group approach. Moreover,
spontaneous symmetry breaking in closed ratchet chains can
be observed in a variety of quasi-1D physical systemsse.g.,
f4gd, including the simple experimental setup sketched in
Fig. 10scd.

CONCLUSION

In conclusion, the transport of interacting particles in a
rocked ratchet was studied both analytically and numerically.
The ratchet current can increase or decrease with the density
for both attracting and repulsive interparticle interactions de-
pending on the temperature and the ac drive. Most notably,
for certain values of the drive and temperature, attracting
particles can condense at a subset of the potential minima.
Depending on the drive amplitude, condensation may result
in either a drop of the net velocity to zero or in its saturation
for high densities. Under the latter circumstances, a very ef-
ficient rectification mechanism sets in. These findings pro-
vide new methods for controlling transport of small particles
in complex biological systems and in nano- or microdevices.
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