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Interacting particles on a rocked ratchet: Rectification by condensation
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The transport of interacting particles subject to an external low-frequency ac force on a ratchetlike asym-
metric substrate is studied via a nonlinear Fokker-Planck equation as well as via numerical simulations. With
increasing the particle density, the ratchet current can either increase or decrease depending on the temperature,
the drive amplitude, and the nature of the interparticle interaction. At low temperatures, attracting particles can
condense randomly at some potential minima, thus breaking the discrete translational symmetry of the sub-
strate. Depending on the drive amplitude, condensation results either in a drop to zero or in the saturation of the
net particle velocity at densities above the condensation density—the latter case producing a very efficient
rectification mechanism.
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INTRODUCTION The apparently simple model studied here is very hard to

Stochastic transport on periodic asymmetritche} sub- investigate analytica!ly. We study it_ by solv_ing a nonlir_lear
strates far from equilibrium has raised widespread interest ifrokker-Planck equation, where the interparticle interaction is
the recent literaturgl]. Intense research activity in this field €ffectively accounted for by means of a mean-field potential
is partly motivated by the challenge to describe and control18]. Our analytical results are confirmed through numerical
some biological processes at both the cell ldf@i instance, ~simulations, which, in turn, allow us to reach beyond the
transport in ion channelf2]) and the body levelmuscle mean-field approximation. For repulsive interactions, we
operationd 3]). Moreover, recent technological advances al-show that the particle net current hits a maximum when in-
low us to develop devices to guide tiny particles on nano-creasing the particle density at relatively low temperatures
and microscale$4]. Some of these devices have alreadyand drive amplitudes; otherwise, it gets monotonously sup-
been realized experimentally to control the motion of vorti-pressed as the density increases. In contrast, for attracting
ces in superconductof$], particles in asymmetric silicon particles, the net current grows with increasing their density
pores[6], charged particles through artificial pored, and  n up to a certain value,, where the analytical solution to
arrays of optical tweezefs], among others. ~our mean-field scheme indicates the occurrence dfie-
~ An important implementation of this category of devices yependent dynamical phase transitidxtensive numerical
is the so-called rocked ratchie], where the oscillating par-  gimylations prove that, for a low ac amplitude, the particles
ticle motion driven by an external periodic force develops a.,,4dense around the potential minima as they are being
Pushed in either direction. This results in thedden drop of
. . d oo their drift velocity at the condensation poirdn raising the
numerically in 2D[10] that the net drift velocity in a ratchet drive amplitude, it can happen that the particles condense

exhibits a maximum versus the driving amplituder the only when the ac force pushes them against the steeper slope
temperaturg This allows us in some cases to tune the dc y P 9 P P

ratchet output to a desired value. However, the far-lessQf th_e asymmetric substrat.e WPT"S’ while re_mailjing_in the
studiedinteraction among particles is expected to have an"unning state as they are _drlven m_the opposite direction. For
important role in the rectification power of a rocked ratchet.SUch @ range of large drive amplitudee ratchet current
can result in very unusual transport properties, includinghe vicinity of the condensation density

spontaneous symmetry breaking, commensurability effects,

potential. It was proven analytically in 1[9] and found

unusual negative mobility, and surprising current inversions. MODEL

This paper analyzes the density dependence of the ratchet _
current of a 1D gas of interacting particles. We stress that Langevin and Fokker-Planck approaches
this model can describe a variety of physical systpdisFor Our starting point is the set of Langevin equations
instance, experiments on transport in an ion chafRdl7]
and particles in asymmetric silicon potf€g could be studied N 9 oL T i)
theoretically within the model discussed in this paper. More- ™'~ X g‘l X WOx; =)+ F(1) + V2eTe"0 (1)

over, a similar mode[18] was successfully used for inter-

pretating the net motion of vortices in a magnetic-for interacting particles moving on the one-dimensional
superconductor hybrid microstructig. In particular, when —asymmetric periodic potentid), U(x+1)=U(x), in the pres-
increasing the vortex densitynagnetic field, a current in- ence of a time-periodic forcg(t) with frequencyr. Here,
version was predicted and obsenjéd. the Gaussian white noisg"(t) with zero averagd&V)y=0
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satisfies the fluctuation-dissipation relati¢é”(t)&)(t+ 7)) IFL(tX) ] (U IF4
=48(7)8, T is the temperaturekg is the Boltzmann constant, A ox ( YRl F(t))Fl(LX) + gFlK
andW denotes the pair interaction potential. Indi¢esnd |

run over all particles. For simplicity, we set the viscous co- + kBT‘?ZFl(;’X) (6)

efficient equal to ASmoluchowski approximationWe inte-
grated the equation séfl) for our numerical simulations, .
while the analytical predictions reported below were derived” ith

by solving the integro-differential equations for the corre- g= f dx’ W(x-x'). (7)
sponding many-particle distribution functions. The Fokker-

Planck-like equation for the one-particle distribution func-

tion, F4(t,x), can be written in the forrfi19] Therefore, Eq.(6) is valid under the following restric-

tions:

nt<ax<l. (8)

AF(t,x) g{(au(x) B F(t)>F1(t!X):| + aiz(Fl(t,x)

ot XL\ X Note that, even though we assumed locality with respect to
B _ W(X=X) PF4(t,X) the substrate unit length, the interparticle interaction can still
X | dx Fy(t,X) G(t,x,X) x +KkgT > be regarded as a long-range interaction because of the den-

sity requirement > 1/n. These are the approximations un-
(2) der which in the following sections we solve analytically Eq.
(6) and compare our analytical results with data from nu-
where F,(t,x,%X) =F;(t,X)F1(t,X)G(x,X,t) denotes a binary Mmerical simula.ti_ons baseq on the Lange\_/in_ equatitl)s
distribution function. It is apparent that particle-particle cor-Although conditions(8) strictly apply to a limited class of
relations decay on a scale of the order of either the interad?hysical systems, the results obtained below have much
tion length for low particle densitiesp<1/\, or the inter- ~ Wwider appl|cab|l|ty. Indeed, numerlcal S|mulat|ons perfor_med
particle distance I for high particle densitiesy>1/x. As ~ Well outside the parameter regié8) agree quite closely with
a consequence, the functi®) which describes the particle- our mean-field description.
particle correlation, differs appreciably from(@ncorrelated
particle motion for particle separation—% <min{n™*,\}, Adiabatic approximation
only. This has been numerically proved[itB]. Therefore, if
each particle interacts with many neighbors, ire.> 1, the
function G in Eq. (2) can be safely approximated to 1 over
the entire integration domaiff order\) of [dXF;GdW/ ox.
It follows that Eq.(2) can be reduced to itsiean-fieldform

1/v
[18-20 ibc=v f j(F) dt, 9

0

In the low-frequency limit, at any timg, the system can
be regarded as being in the steady state corresponding to an
applied dc forceF=F(ty); hence, the adiabatic expression
for the ratchet current

Ftx)

P ax where j(F) is the stationary current in the presence of the

f constant drive~. If j(F) is not an odd function of, then the
d aum dF4(t,X i i i -
[Fl(t,x){ B F(t)} FkgT z(x )], 3) rocked ratchet can rectify the oscillatory motion of the par

= ax ticles. The stationary solution to E(B) can be written as

—j(F) = (U’ = F)F1(x) + ks TF} + gF4F) 10
where the mean-field potential™(x) is defined as P =( JFA0) +kaTFy + gF1Fy (10

(the prime denotes axderivative. When adopting, for sim-
plicity, the piecewise linear periodic potentfahset in Fig.
U™M(x) = U(x) + f dx’ W(x—x")F4(t,x"). 4 1@]

X
U=Q|— for0<x<ly,
Hereafter, the one-particle distribution functid(t,x) is 1

normalized in terms of the average particle density.e., |
X~

U:Q{l— }forll<x<l (11)

2

|
J F,(t,x) dx/l =n. (5)

o (I;+1,=1), the stationary one-particle distribution in Eqg.

(10), F4(x), can be expressed in implicit form as
In order to make the problem more tractable, we further

discard nonlocal effects by assuming the interaction length Fi(F-f)—j (F-f)x—g(F;—Py)

to be much smaller than the peribdf the substrate potential m =ex keT + Qj/(F — f,) (12)
U(x). This allows us to replace the integro-differential equa-

tion (3) by for 0<x<l4, and
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FIG. 1. (Color onling Repelling particles: net velocitypc ver- FIG. 2. (Color onling Attracting particles(a) Net velocity Vpc
sus dimensionless pair coupligg:gn/kgT for different values oA versus effective interaction couplifig=gn/kgT for different values
in the regime of high actlvatlorqu/kBI=lO, and large aniso- of driving amplitudesR:AI/kBT in the regime of low activation,
tropy y. Vpc(@) exhibits a broad peak foh<20. The normalized =1, and large anisotropy=40. There exists no mean-field solu-
driving amplitudeA=1A/kgT is a measure of the strength of the ac tion for §<Tg, (left end points. (b) Gas-liquid phase diagram in the
drive, compared to the disordering thermal energy. These resuldensity-drive plane. The phase boundary between gas and liquid
were obtained by solving the mean-field set of equati@ds Inset  phases was obtained based on the criterion of existence of a solu-
in (a): two cells of the sawtooth substrate potentiag. (11)]. tion to the mean-field equatiori4). At zero driving Fpc=0, the

transition is an equilibrium transition. The condensation transition is

F1(F +1,) _] F<(F +,)(x—1y) - g(Fy - P1)> a3 driven out of equilibrium by increasing the DC forégc. Black

dots in(b) mark the left-end-points of curves {@). These results

Pi(F+f)-j kgT +gj/(F + ) were obtained by solving the mean-field set of equatidds.
for I, <x<I. Here,Py and P, are the particle densities at the vV A /T, - GA
potential minima and maxima, respectively, i.Bg=F;(0), P- = = 5 c m
P,=Fi(ly); f1=Q/l; and f,=Q/l, are the two restoring 9
forces exerted by the substrate. e
Two equations for the three unknown quantitieg P, _ "+ (@P+ 1)AqlqI, 14
and j were derived writing Eqs(12) and (13) for the ex- f+q,-Ty) ’
tremal pointsx=1, andx=I, respectively, and imposing peri- . . .
odic boundary conditionk;(I)=F;(0)=P,. A third equation in terms of the dimensionless variables
for these variables was obtained by integrating @) over Po+ Py
one unit cell of the piecewise linear potentiddx) and then = on '
eliminating the two integration constamﬁ)lFl(x)dx and
fllFl(x)dx by means of the normalization conditidb). The Po- P,
resulting equations can be conveniently expressed as A= n
p_ VA o FMatGA v 15
= 2 [1+9vIF]]’ " kgTn' (19
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and the model parameters

= = (activation,
kgT ( r)

q

f= =
ke T

(drive),

an

= (density or pair coupling and
ksT

'g:

(16)

Here, we introduced the auxiliary anisotropy parameters

v=14/1, = (ratchet anisotropy

1—‘1:|/|1:1+'y_1 and

F2=|/|2: 1+’y,
as well as the total dimensionless forces
f7=f-ql'y and

PHYSICAL REVIEW E71, 011107(2009

ff=f+ql, (18)
experienced by a single particle moving along the relevant
sides of a potential well. A crucial assumption of this ana-
lytical procedure is the spatial periodicity of the distribution
function F(x) =F(x+I). This allowed us to reduce a spatially
infinite problem to one cel(say, fromx to x+1). However,
this simplification becomes invalid near the condensation
transition, where a spontaneous symmetry breaking mecha-
nism destroys the translational symmetry of the substrate
cells.

At low densities, the net particle velocity can be expanded
in powers ofg,

V=V, +gV, + O, (19
(17) whereV, andV; read
. ()2
Vo e o - Tl 2@ 20
|
QAL o T {Poa = [Ag + V/T'5] 8" + [Ag = VT4 187} (21)

Valh) = T+ T, —

respectively. Here, we used the zeroth-order approximation

of the dimensionless probabilities

[f+q@-TYJVo— "

Ag=A(@=0)= ,
0=A@=0) ariT,
P —P(N—O)—ﬁ)coth ~ +ﬁ (22
0=Fg=Y=5 or, | T

and the following combinations of Boltzmann-like prefac-

tors:
)“( : ) I—( f
a=cot + cot

+

2T,
. . f+ -1
B = {2 smf?( 21"2)] ,
f— -1

B = {2 sinh’-(z—rlﬂ . (23)

The functionsA(g), P(g), andV(g) at smallg can be deter-
mined by means of Eq$20) and(21). In order to compute
these functions at high&y, Egs.(14) can be solved numeri-
cally by increasing stepwise through a simple iteration pro-
cedure. Numerically obtained curves fé(g) are plotted in
Figs. 1 and 2.

I'))]a—2(ql )2 ’

ANALYTICAL RESULTS

Let us now consider the square-wave sigria(t)
=Asgn[cog2mt)] with sgri---] denoting the sign of the
argument. In the adiabatic approximation with frequemcy
<A/l, the particle net velocity can be written as

Vpe=[V(A) +V(-A)]/2, (24)

whereV(J_rZ\) are the relevant drift velocities in the presence
of the dc forces A, respectively, with

IA

A :
kT

(25)

Theg dependence of/pc is shown in Fig. 1a) for the case

of repelling particles in the regime of large activatiang.e.,

a large ratio of the potential barrier to thermal-fluctuation
energy. Particle transport in the ratchet is enhanced by in-
creasing the interaction strenggh(or the particle density)

at relatively low drivesA, as shown by the pronounced
maxima of the corresponding curvé,-(g) at >0 [Fig.

1(a)]. This effect is suppressed for larger valuesApfvhere
a monotonic decay 0¥p(9) was observedlFig. 1(b)]. The

dependence of/c ong and A can be understood qualita-
tively by noticing that the repelling particles tend to expel
one another from the potential wells; this effectively
smoothes out the potential barriers. For highand low

drivesA, the particles are strongly confined in the potential
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FIG. 4. Vpc versusn for repelling particles. These dataym-
bols) were obtained by numerically solving the Langevin Eq.for
the potentialU(x) in Eq. (11) and the truncated pair potentil(x)
in Eq. (27); while the analytical curves were obtained by solving the
mean-field set of equationd4). Other simulation parameters:
=0.01,A=0.5,Q=1, 1;=0.9,A=0.1, gyp=0.02. (a) T=0.2 (solid
circles and (b) T=0.05 (open circles Periodic boundary condi-
tions were imposed over two unit cells of the piecewise linear po-
tential (11). The corresponding analytical predictions f@rgvp

. /——' =0.02 (dashed lingsand g=gy;=0.02/1.5~0.0133 (solid lines
S~ are reported for comparisdsee texk
barriersq=1, e.g., higher temperatures, the interval of the

FIG. 3. (Color onling Net particle spee¥pc versus drive am-  drive amplitudeA, whereVpc(G) exhibits a peakas in Fig.
plitude A for repelling, attracting, and noninteracting particles at 1(a)], shrinks and finally disappears completely.
y=1.2, §=+0.05, =20 (a) and q=2 (b). Panel(c) shows the The case of attracting particles corresponds to negative
curvesVpc Versus effective interaction strenditfor the parameter ~ values of the dimensionless pair coupliggWheng is very
values corresponding to the dat®) and (2) in (a). These results small, Vpc is a linear function ofg,
were obtained by solving the mean-field set of equatidds.

VDC

Vpe =[Vo(A) +3Va(A) + V(= A) + V(- A)J/2. (26)
wells so that the drift current is weak. In such a case, the
suppression of the potential barriers due to the mutual repulfhus, as opposed to the case of repelling particles, the net
sion of the particles enhances their mobility, thus allowing avelocity Vpc increase$Fig. 2] with increasing the particle
stronger rectification effect. However, at even strongerdensityn or the strengthg| of interactions for relatively low
drives, A= q, the suppression of the barriers, whgnin-  q values and/or largé\. Similarly, Vpc decreases with in-
creases, results in a weaker anisotropy of the system: Thareasingn or |g| for large q [see Fig. &), solid curvd.
positive and negative currents compensate each other mok#owever, the applicability of these results for attractive in-
effectively, leading to a monotonic decay\¢f(g). For low  teractions is restricted to the negative intervafj@xtending
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FIG. 5. Vpc versusn for attracting particles withA=0.8, T hard easv direction
=0.2 (solid squares and A=1, T=0.4 (open squargs Periodic F /n direction y
boundary conditions were imposed over two unit cells of the piece- L PO P (—
wise linear potentia(11). These results were obtained by numeri- ] "
cally solving the Langevin Ed1) for the potentialJ(x) in Eq. (11) ! i
and the truncated pair potentil(x) in Eq. (27). Other simulation 8—: ] -0.4
parametersy=0.01,Q=1, 1,=0.9,A=0.1, andg=-0.02. :
from zero down to the critical vaIu'QC(TA,q) (corresponding !
to a critical densityn, or a critical interaction strengtt),) for (b)
which Eq.(14) ceases to have a solution. This happens when 0 00
the probability,P,=F;(0), for the particles to sit at the bot- 1 6 " 1

tom of the potential wells reaches a corresponding critical
value, which fory—c approachekgT/|g|. This behavior

signals the onset of a phase transition: A macroscopic numy
ber of attracting particles is predicted to condense in th
“liquid” phase around the substrate minima. Note that thi
finding for long-rangeinteracting particles does not contra-

FIG. 6. (Color onling (a) Net average velocity/pc versus par-
icle density n for repelling (open circley and attracting(solid
esquare}sparticles. These results were obtained by numerically solv-
%ng the Langevin Eq(1) for the potentialU(x) in Eq. (11) and the

truncated pair potentiaM(x) in Eg. (27). Other simulation param-

dict the common understanding that such a phase transitiol}, s arey=0.01 A=6 Q=1, 1,=0.9, A=0.1, g=-0.02, andT

cannot occur in a 1D multiparticle system wihort-range
interactions. Indeed, as mentioned above, the local form of
the mean-field Fokker-Planck equati@) was obtained un-

der the assumptiori8) that many particles can be fitted
within one interaction length, so that their interactions can b
regarded as long-range. Using the criterion of the existenc
of the mean-field solution Eq(14), we constructed the

boundany[Fig. 2(b)] between gaslike and liquidlike phase for
attracting particles subjected to a dc fofgg.: The ensuing

phase transition turns out to be sensitive also to the presen
of external biases, i.e., the condensation point depends on

Foc, Ne=nc(Fpo).

NUMERICAL SIMULATIONS

=0.2. (b) Spatial distribution of attracting particles fa=7, corre-
ponding to data marked by a black circle (. One snapshot
(normalized distributiors F4/n) of the particles was taken at each
drive period with the external force pushing in the “har@blid
fine, the left axi$ or the “easy”(dotted line, the right axjsdirec-

on, respectively. Particle condensation at both potential minima is
apparent in the latter case. In both panels, periodic boundary con-
ditions were imposed over two unit cells of the piecewise linear
88tentia|(11).

~ To determine the interval of driving amplitudéswhere In order to assess our analytical predictions, we numeri-
increasing the density of the interacting particles enhances cally simulated the Langevin dynami¢®) for the piecewise
rectification, we computed the curvdg(A) for small val-  linear periodic potential(x) in Eq. (11) and a conveniently
ues ofg using the analytical expressio(®0) and(21) for V,  truncated pair potential

andV; [Fig. 3@]. For highqg, the net velocity of repelling

particles increase@ecreaseswith increasingg (or n) if the A -yl

drive is smaller(largen than an optimal valugFig. 3(@)]. For G
the same value of], the current of attracting particles be-
haves in the opposite way. Two typical curvésc(g), for
fixed values ofA andq, are displayed in Fig.(8). For lowq,
Vpe grows monotonically witfg, no matter what the value of
A [i.e., Vpc increasegdecreasesmonotonically with raising

n or changingg from negative(attracting to positive values
(repelling particles]: The three curve¥p(A) plotted in Fig.
3(b) never cross.

W(y) =g iyl <\,

W=0 otherwise. 27

Figures 4a) (solid symbol$ and 4b) (open circleg clearly
show that, as predicted in our theoretical analysis, the net
current for repelling particles increas@tecreaseswith the
density at low(high) temperatureghigh (low) q]. The com-
parison between numeri¢doty and theory(dashed curves
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0.4 OQOQQEQBiDVD‘D‘ —u—2cells
™ 7 (a) —0O—4 cells
0 —o— 4 cells with N/2
T T T T T T T T T
0 10 n 20 0 5 10 15 20
. . ) ) N = number of particles in the system
FIG. 7. Net velocityVpc versus particle density for attracting 0.6
particles withA=15 andT=0.2. These results were obtained by —u— 2 cells
numerically solving the Langevin Eql) for the potentialU(x) in —oO— 4 cells
Eqg. (11) and the truncated pair potenti#l(x) in Eq. (27). Other —o— 4 cells with n/2

simulation parameters are=0.01, Q=1, 1;,=0.9, A=0.1, andg

=-0.02. Periodic boundary conditions were imposed over two unit 0.4 1 o (b)
cells of the piecewise linear potentigll). Because of the strong V DDEIDD
driving, there is no condensation aNgc increases monotonically. DC DDDDDD
DDD

reveals a quantitative disagreement. This apparent discrep- L. Mo

. . . . m
ancy points to unavoidable corrections to our mean-field 024 same P il L
scheme, including an appreciable screen[d®] of the particle density 'I-.__
interparticle interaction, and nonlocality effects introduced -

; R ; H ; T T ¥ T T T ' T v T Y

by the truncated pair potentislV used in the simulations. To 0 5 10 15 20 5 30

make the approximate analytical curves reproduce closer the i .
corresponding simulation data, the bare interaction constant N = number of particles in the system
g=0gup employed in the simulation must be replaced in Egs.
(14) by a rescaled interaction constagfe, namely gur
=gup/1.5 (solid curves versus circles in Fig).4Thus, our

analytical rgsults agree quite we_II with nu.me'ricsl, includingy, potentialU(x) in Eq. (11) and the truncated pair potentidl(x)
the current_lnvers,lon a_t high particle density in F'gb_)"l in Eq. (27). Periodic boundary conditions were imposed over two
_ As predicted analytically, for the case of attracting par-(solig squaresand four potential unit cell§open squarés Other
ticles, the ratchet current increases with the particle densit¥imyation parameters are=0.01,Q=1,1,=0.9,,=0.1,g=+0.02,

up to the condensation poing [Figs. 5 and @squarell. For  T=0.3, andA=6. The open small circles are the simulation data for
densities above the condensation thresimgldlifferent sce-  a four-cell chain with half the number of particles, i.¥pc versus
narios can take place. If the amplitudeof the ac force is N/2.

smaller than both substrate restoring for€@gd, and Q/I,,
then the particles condense in the tilted potential wells, res
gardless of the orientation of the drive. Since the mobility of
the condensed particles is zero, the average net particle ¢
rent vanishes fon>n. (Fig. 5. Most notably, if A takes
values between the two substrate for€gd,, Q/l,, i.e., f;
<A<f,, then potential wells can exist only in one tilted
configuration(here,U+AXx). Therefore, in our simulation the
particles condense at the minima Bf+Ax, when the ac
force pushes them to the left; the instantaneous current in SPONTANEOUS SYMMETRY BREAKING

such a “hard” direction drops to zero. On the contrary, the .

particles are almost ballistic when the periodic force pushes Next, we study how the net velocitypc depends on the
them in the opposite, “easy” directidno minima and there- total numbem of _partlcles_ ina p_erlodlc ratchef[ with a pe_zrlod
fore no condensation id —Ax). The stroboscopic spatial dis- Of two or four unit cells(Fig. 8), i.e., two-teetHinset in Fig.
tribution of attracting particles subject to an ac drive pointing1(@] or four-teeth closed chains. These results can be easily
in the hard and easy directions, respectively, is shown in Figextended for larger numbers of unit cells.

6(b): When pushed in the hard direction, almost all particles F% repulsive particle-particle interactions, the net veloc-
condense at the bottom of the wells; on the contrary, particleBY Vpc Of the four-cell ratchet chain coincides with the net
moving to the right in the running state are distributed quitevelocity V2. of the two-cell ratchet chain as long as the two
homogeneously in space. Therefore, motion is allowed in thelevices support the same particle density: that\/E;%(ZN)

FIG. 8. (Color onling Net velocity Vpc versus the number of
particlesN for (a) attracting andb) repelling particles. These re-
sults were obtained by numerically solving the Langevin @&gfor

easy” or natural ratchet direction, only; the curvigs(n)
levels off in correspondence with the condensation density
“ﬁ;, i.e., it saturatesfor n>n, [Fig. 6(a), square$ For larger

ac forces withA>max(f,,f,), no condensation occurs in
either direction an&/p(n) approaches monotonically a satu-
ration value(Fig. 7) which decreases with increasidg
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FIG. 10. (Color online The mechanism of spontaneous symme-

FIG. 9. (Color onling Spontaneous symmetry breaking destroystry breaking of Fig. 9 has counterparts in the theory of equilibrium
the equivalence of two neighboring potential cells at the phase trarphase transitionge.g., the paramagnetic-ferromagnetic transition
sition. The normalized particle distributioris (x/1)/N are shown ~ shown in(a and certain dynamical instabilities of the type sketched
for four different total number&=2n of particles inside the two in (b), see text (c) A schematic diagram of a simple realization of
cells, corresponding to the net velociipc(N) shown at the top. @ four-cell ratchet device. Two coaxial cylinders, the outer one hav-
The normalized equilibrium distributions;(x/1)/N for the same  ing a sawtooth-shaped inner cross section, rotate with angular fre-
particle numbers are also shown in the right column. These resultguency Qg; subject to the resulting centrifugal force, the elastic
were obtained by numerically solving the Langevin ED.for the particles experience an effective ratchetlike potential. An ac driving
potentialU(x) in Eq. (11) and the truncated pair potentdl(x) in force can be generated by periodically switching the rotation fre-
Eq. (27). The parameters used here are0.01,Q=1, [;=0.9,x  quency between two valugdz+AQg.
=0.1,g=-0.02,T=0.2, andA=0.5. Both cells are equally occupied
at densities lower than the condensation péey., point 1; this  relatively weak driving and equilibrium operating condi-
equivalence is broken at higher densitipsint 2 and 3. tions (no external drivealike.

In the mean-field approach, this peculiar symmetry break-
=VZ(N) [see Fig. &)]. This means that the net velocities ing can be understood as due to the competition of solutions
depend only on the particle density in the ratchet, as sugwith different spatial periodst, 2I, 3l, etc. Indeed, for a
gested by the spatial equivalence of the potential cells.  two-cell chain, the analytical technique of Sec. Il B would

In contrast, for attracting particles, we obtaug%(ZN) introduce five independent variableRs=F;(0), P,=F;(l,),
#V(DZ():(N) [Fig. 8@)], which indicates that the cell equiva- P,=Fi(l), P3=F,(I+ly), andj, instead of the three variables
lence is broken. In order to clarify this property, we plot the Po=F;(0), P;=F(l;), andj in Eq. (14). In order to derive a
particle distributionsF; below and above the condensation complete set of equations for these five variables, we need to
point (Fig. 9. Simulating two substrate potential cells, we impose periodic boundary condition within two cells, i.e.,
found that both cells are equivalently occupied at low par-Py=F;(0)=F4(2l). The resulting equation set admits solu-
ticle densities(see point 1, below the condensation ppint tions with both spatial periodsand 2. A detailed discussion
Above condensatiofpoints 2 and B the spatial equivalence of this point will be reported elsewhere.
of the two cells is spontaneously broken: particles condense The symmetry-breaking mechanism discussed here con-
either on the right or the left minimum, no matter if the sists in the irregular accumulation of particles in some sub-
initial particle distribution was set the same in both cells.strate wells, with the remaining wells getting completely de-
This is the manifestation of very small fluctuations gettingpleted. This occurs via the amplification of fluctuations: very
strongly amplified in time. Note that the translational sym-minor, random differences in particle occupation of different
metry of the substrate may be broken in nonequilibriigh  cells become more and more pronounced when time evolves
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and finally break the original equivalence of all cells. This is CONCLUSION
somewhat similar to the “Maxwell demon” mechanism

where particles originally equally distributed among cells ac- In conclusion, the transport of Interacting part|cles_|n a
cumulate in some wells while depleting other wells. Also, it rocked ratchet was studied both analytically and numerically.

) - oo The ratchet current can increase or decrease with the density
provides a deep analogy between this nonequilibrium Olyfor both attracting and repulsive interparticle interactions de-

namics near the condensation point and dynamical instabili-endin on the temperature and the ac drive. Most notabl
ties or critical fluctuations near symmetry-breaking phas g P . : ol
or certain values of the drive and temperature, attracting

transitions(see, €.g., Re{21]). For instance, critical fluctua- articles can condense at a subset of the potential minima
tions at the critical temperature produce a symmetry-broke enending on the drive amolitude condens%tion ma result'
ferromagnetic statéwith either up or down magnetization . P 9 phtude, - yre

in either a drop of the net velocity to zero or in its saturation

along a ferromagnetic easy-axifom a fully symmetric : o .
. ; : : for high densities. Under the latter circumstances, a very ef-
paramagnetic phas€ig. 10@)]. By analogy, if two particles ficient rectification mechanism sets in. These findings pro-

start their motion from an unstable equilibrium position, theyvide new methods for controlling transport of small particles

can move far apart from one another, depending on VerYn complex biological systems and in hano- or microdevices
minor differences in their initial conditior{$-ig. 10(b)]. Note P 9 y '

that such an analogy between equilibrium phase transitions
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